4.6 Article

Fre Is the Major Flavin Reductase Supporting Bioluminescence from Vibrio harveyi Luciferase in Escherichia coli

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 284, 期 13, 页码 8322-8328

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M808977200

关键词

-

资金

  1. National Science Foundation [0078363]
  2. Div Of Molecular and Cellular Bioscience
  3. Direct For Biological Sciences [0078363] Funding Source: National Science Foundation

向作者/读者索取更多资源

Unlike the vast majority of flavoenzymes, bacterial luciferase requires an exogenous source of reduced flavin mononucleotide for bioluminescence activity. Within bioluminescent bacterial cells, species-specific oxidoreductases are believed to provide reduced flavin for luciferase activity. The source of reduced flavin in Escherichia coli-expressing bioluminescence is not known. There are two candidate proteins potentially involved in this process in E. coli, a homolog of the Vibrio harveyi Frp oxidoreductase, NfsA, and a luxG type oxidoreductase, Fre. Using single gene knock-out strains, we show that deletion of fre decreased light output by greater than two orders of magnitude, yet had no effect on luciferase expression in E. coli. Purified Fre is capable of supporting bioluminescence in vitro with activity comparable to that with the endogenous V. harveyi reductase (Frp), using either FMN or riboflavin as substrate. In a pull-down experiment, we found that neither Fre nor Frp co-purify with luciferase. In contrast to prior work, we find no evidence for stable complex formation between luciferase and oxidoreductase. We conclude that in E. coli, an enzyme primarily responsible for riboflavin reduction (Fre) can also be utilized to support high levels of bioluminescence.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据