4.6 Article

Life and Death of Sensory Hair Cells Expressing Constitutively Active TRPML3

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 284, 期 20, 页码 13823-13831

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M809045200

关键词

-

资金

  1. National Institutes of Health [DC04563]

向作者/读者索取更多资源

The varitint-waddler mutation A419P renders TRPML3 constitutively active, resulting in cationic overload, particularly in sustained influx of Ca2+. TRPML3 is expressed by inner ear sensory hair cells, and we were intrigued by the fact that hair cells are able to cope with expressing the TRPML3(A419P) isoform for weeks before they ultimately die. We hypothesized that the survival of varitint-waddler hair cells is linked to their ability to deal with Ca2+ loads due to the abundance of plasma membrane calcium ATPases (PMCAs). Here, we show that PMCA2 significantly reduced [Ca2+](i) increase and apoptosis in HEK293 cells expressing TRPML3(A419P). The deaf-waddler isoform of PMCA2, operating at 30% efficacy, showed a significantly decreased ability to rescue the Ca2+ loading of cells expressing TRPML3(A419P). When we combined mice heterozygous for the varitint-waddler mutant allele with mice heterozygous for the deaf-waddler mutant allele, we found severe hair bundle defects as well as increased hair cell loss compared with mice heterozygous for each mutant allele alone. Furthermore, 3-week-old double mutant mice lacked auditory brainstem responses, which were present in their respective littermates containing single mutant alleles. Likewise, heterozygous double mutant mice exhibited severe circling behavior, which was not observed in mice heterozygous for TRPML3(A419P) or PMCA2(G283S) alone. Our results provide a molecular rationale for the delayed hair cell loss in varitint-waddler mice. They also show that hair cells are able to survive for weeks with sustained Ca2+ loading, which implies that Ca2+ loading is an unlikely primary cause of hair cell death in ototoxic stress situations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据