4.6 Article

Tissue Processing of Nitrite in Hypoxia AN INTRICATE INTERPLAY OF NITRIC OXIDE-GENERATING AND-SCAVENGING SYSTEMS

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 283, 期 49, 页码 33927-33934

出版社

ELSEVIER
DOI: 10.1074/jbc.M806654200

关键词

-

资金

  1. National Institutes of Health [HL 69029]
  2. Kirschstein National Research Service
  3. Medical Research Council (MRC Strategic Appointment Scheme)
  4. Wellcome Trust
  5. Medical Research Council [G0701115] Funding Source: researchfish
  6. MRC [G0701115] Funding Source: UKRI

向作者/读者索取更多资源

Although nitrite (NO2-) and nitrate (NO3-) have been considered traditionally inert byproducts of nitric oxide (NO) metabolism, recent studies indicate that NO2- represents an important source of NO for processes ranging from angiogenesis through hypoxic vasodilation to ischemic organ protection. Despite intense investigation, the mechanisms through which NO2- exerts its physiological/pharmacological effects remain incompletely understood. We sought to systematically investigate the fate of NO2- in hypoxia from cellular uptake in vitro to tissue utilization in vivo using the Wistar rat as a mammalian model. We find that most tissues (except erythrocytes) produce free NO at rates that are maximal under hypoxia and that correlate robustly with each tissue's capacity for mitochondrial oxygen consumption. By comparing the kinetics of NO release before and after ferricyanide addition in tissue homogenates to mathematical models of NO2- reduction/NO scavenging, we show that the amount of nitrosylated products formed greatly exceeds what can be accounted for by NO trapping. This difference suggests that such products are formed directly from NO2-, without passing through the intermediacy of free NO. Inhibitor and subcellular fractionation studies indicate that NO2- reductase activity involves multiple redundant enzymatic systems (i.e. heme, iron-sulfur cluster, and molybdenum-based reductases) distributed throughout different cellular compartments and acting in concert to elicit NO signaling. These observations hint at conserved roles for the NO2--NO pool in cellular processes such as oxygen-sensing and oxygen-dependent modulation of intermediary metabolism.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据