4.6 Article

The RNA-binding protein CUGBP1 regulates stability of tumor necrosis factor mRNA in muscle cells - Implications for myotonic dystrophy

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 283, 期 33, 页码 22457-22463

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M802803200

关键词

-

资金

  1. NIGMS NIH HHS [GM 072481] Funding Source: Medline

向作者/读者索取更多资源

Type I myotonic dystrophy(DM1) is caused by a triplet repeat expansion in the 3'-untranslated region (UTR) of the dystrophia myotonia protein kinase (DMPK) gene. Pathogenesis is closely linked with production of a toxic RNA from the mutant allele, which interferes with function of several RNA-binding proteins, including CUGBP1. Here we show that expression of a mutant DMPK 3'-UTR containing 960 CUG repeats is sufficient to increase expression and stability of an mRNA encoding the potent proinflammatory cytokine, tumor necrosis factor (TNF). CUGBP1 specifically recognizes sequences within the TNF 3'-UTR that are dissimilar from its canonical UG-rich binding site. Depletion of CUGBP1 from mouse myoblasts results in increased abundance of TNF mRNA through stabilization of the transcript. Moreover, activation of the protein kinase C pathway by treatment with phorbol ester, which has been shown previously to result in CUGBP1 phosphorylation, also causes TNF mRNA stabilization. Our results suggest that the elevated serum TNF seen in DM1 patients may be derived from muscle where it is induced by expression of toxic DMPK RNA. Importantly, overexpression of this potent cytokine could contribute to the muscle wasting and insulin resistance that are characteristic of this debilitating disease.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据