4.6 Article

Mutational Analysis Reveals Distinct Features of the Nox4-p22phox Complex

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 283, 期 50, 页码 35273-35282

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M804200200

关键词

-

资金

  1. National Institutes of Health [R01 AI024838, P01 CI000095, R01 AI026711, R01 HL045635]

向作者/读者索取更多资源

The integral membrane protein p22(phox) forms a heterodimeric enzyme complex with NADPH oxidases (Noxs) and is required for their catalytic activity. Nox4, a Nox linked to cardiovascular disease, angiogenesis, and insulin signaling, is unique in its ability to produce hydrogen peroxide constitutively. To date, p22phox constitutes the only identified regulatory component for Nox4 function. To delineate structural elements in p22phox essential for formation and localization of the Nox4-p22(phox) complex and its enzymatic function, truncation and point mutagenesis was used. Human lung carcinoma cells served as a heterologous expression system, since this cell type is p22(phox)-deficient and promotes cell surface expression of the Nox4-p22(phox) heterodimer. Expression of p22(phox) truncation mutants indicates that the dual tryptophan motif contained in the N-terminal amino acids 6-11 is essential, whereas the C terminus (amino acids 130-195) is dispensable for Nox4 activity. Introduction of charged residues in domains predicted to be extracellular by topology modeling was mostly tolerated, whereas the exchange of amino acids in predicted membrane-spanning domains caused loss of function or showed distinct differences in p22phox interaction with various Noxs. For example, the substitution of tyrosine 121 with histidine in p22(phox), which abolished Nox2 and Nox3 function in vivo, preserved Nox4 activity when expressed in lung cancer cells. Many of the examined p22(phox) mutations inhibiting Nox1 to -3 maturation did not alter Nox4-p22(phox) association, further accenting the differences between Noxs. These studies highlight the distinct interaction of the key regulatory p22(phox) subunit with Nox4, a feature which could provide the basis for selective inhibitor development.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据