4.6 Article

BRD7, a Novel PBAF-specific SWI/SNF Subunit, Is Required for Target Gene Activation and Repression in Embryonic Stem Cells

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 283, 期 47, 页码 32254-32263

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M806061200

关键词

-

资金

  1. National Institutes of Health [GM038760]
  2. Swiss National Science Foundation
  3. European Molecular Biology Organization
  4. Roche Research Foundation
  5. Ruth L. Kirschstein National Research Service Award

向作者/读者索取更多资源

The composition of chromatin-remodeling complexes dictates how these enzymes control transcriptional programs and cellular identity. In the present study we investigated the composition of SWI/SNF complexes in embryonic stem cells (ESCs). In contrast to differentiated cells, ESCs have a biased incorporation of certain paralogous SWI/SNF subunits with low levels of BRM, BAF170, and ARID1B. Upon differentiation, the expression of these subunits increases, resulting in a higher diversity of compositionally distinct SWI/SNF enzymes. We also identified BRD7 as a novel component of the Polybromo-associated BRG1-associated factor (PBAF) complex in both ESCs and differentiated cells. Using short hairpin RNA-mediated depletion of BRG1, we showed that SWI/SNF can function as both a repressor and an activator in pluripotent cells, regulating expression of developmental modifiers and signaling components such as Nodal, ADAMTS1, BMI-1, CRABP1, and thyroid releasing hormone. Knockdown studies of PBAF-specific BRD7 and of a signature subunit within the BAF complex, ARID1A, showed that these two subcomplexes affect SWI/SNF target genes differentially, in some cases even antagonistically. This may be due to their different biochemical properties. Finally we examined the role of SWI/SNF in regulating its target genes during differentiation. We found that SWI/SNF affects recruitment of components of the preinitiation complex in a promoter-specific manner to modulate transcription positively or negatively. Taken together, our results provide insight into the function of compositionally diverse SWI/SNF enzymes that underlie their inherent gene-specific mode of action.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据