4.6 Article

Disulfide bond structure and domain organization of yeast β(1,3)-glucanosyltransferases involved in cell wall biogenesis

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 283, 期 27, 页码 18553-18565

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M801562200

关键词

-

向作者/读者索取更多资源

The Gel/Gas/Phr family of fungal beta(1,3)-glucanosyltransferases plays an important role in cell wall biogenesis by processing the main component beta(1,3)-glucan. Two subfamilies are distinguished depending on the presence or absence of a C-terminal cysteine-rich domain, denoted Cys-box. The N-terminal domain (NtD) contains the catalytic residues for transglycosidase activity and is separated from the Cys-box by a linker region. To obtain a better understanding of the structure and function of the Cys-box-containing subfamily, we identified the disulfide bonds in Gas2p from Saccharomyces cerevisiae by an improved mass spectrometric methodology. We mapped two separate intra-domain clusters of three and four disulfide bridges. One of the bonds in the first cluster connects a central Cys residue of the NtD with a single conserved Cys residue in the linker. Site-directed mutagenesis of the Cys residue in the linker resulted in an endoplasmic reticulum precursor that was not matured and underwent a gradual degradation. The relevant disulfide bond has a crucial role in folding as it may stabilize the NtD and facilitate its interaction with the C-terminal portion of a Gas protein. The four disulfide bonds in the Cys-box are arranged in a manner consistent with a partial structural resemblance with the plant X8 domain, an independent carbohydrate-binding module that possesses only three disulfide bonds. Deletion of the Cys-box in Gas2 or Gas1 proteins led to the formation of an NtD devoid of any enzymatic activity. The results suggest that the Cys-box is required for proper folding of the NtD and/or substrate binding.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据