4.6 Article

Prion Protein Amyloid Formation under Native-like Conditions Involves Refolding of the C-terminal α-Helical Domain

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 283, 期 50, 页码 34704-34711

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M806701200

关键词

-

资金

  1. National Institutes of Health [NS 38604, AG 14359]

向作者/读者索取更多资源

Transmissible spongiform encephalopathies are associated with conformational conversion of the cellular prion protein, PrPC, into a proteinase K-resistant, amyloid-like aggregate, PrPSc. Although the structure of PrPSc remains enigmatic, recent studies have afforded increasingly detailed characterization of recombinant PrP amyloid. However, all previous studies were performed using amyloid fibrils formed in the presence of denaturing agents that significantly alter the folding state(s) of the precursor monomer. Here we report that PrP amyloid can also be generated under physiologically relevant conditions, where the monomeric protein is natively folded. Remarkably, site-directed spin labeling studies reveal that these fibrils possess a beta-core structure nearly indistinguishable from that of amyloid grown under denaturing conditions, where the C-terminal alpha-helical domain of the PrP monomer undergoes major refolding to a parallel and in-register beta-structure upon conversion. The structural similarity of fibrils formed under drastically different conditions strongly suggests that the common beta-sheet architecture within the similar to 160-220 core region represents a distinct global minimum in the PrP conversion free energy landscape. We also show that the N-terminal region of fibrillar PrP displays conformational plasticity, undergoing a reversible structural transition with an apparent pK(a) of similar to 5.3. The C-terminal region, on the other hand, retains its beta-structure over the pH range 1-11, whereas more alkaline buffer conditions denature the fibrils into constituent PrP monomers. This profile of pH-dependent stability is reminiscent of the behavior of brain-derived PrPSc, suggesting a substantial degree of structural similarity within the beta-core region of these PrP aggregates.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据