4.6 Article

Structure of yeast Dom34 - A protein related to translation termination factor eRF1 and involved in No-Go decay

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 283, 期 11, 页码 7145-7154

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M708224200

关键词

-

向作者/读者索取更多资源

The yeast protein Dom34 has been described to play a critical role in a newly identified mRNA decay pathway called No-Go decay. This pathway clears cells from mRNAs inducing translational stalls through endonucleolytic cleavage. Dom34 is related to the translation termination factor eRF1 and physically interacts with Hbs1, which is itself related to eRF3. We have solved the 2.5-angstrom resolution crystal structure of Saccharomyces cerevisiae Dom34. This protein is organized in three domains with the central and C-terminal domains structurally homologous to those from eRF1. The N-terminal domain of Dom34 is different from eRF1. It adopts a Sm-fold that is often involved in the recognition of mRNA stem loops or in the recruitment of mRNA degradation machinery. The comparison of eRF1 and Dom34 domains proposed to interact directly with eRF3 and Hbs1, respectively, highlights striking structural similarities with eRF1 motifs identified to be crucial for the binding to eRF3. In addition, as observed for eRF1 that enhances eRF3 binding to GTP, the interaction of Dom34 with Hbs1 results in an increase in the affinity constant of Hbs1 for GTP but not GDP. Taken together, these results emphasize that eukaryotic cells have evolved two structurally related complexes able to interact with ribosomes either paused at a stop codon or stalled in translation by the presence of a stable stem loop and to trigger ribosome release by catalyzing chemical bond hydrolysis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据