4.6 Article

Quantitative Regulation of Intracellular Endothelial Nitric-oxide Synthase (eNOS) Coupling by Both Tetrahydrobiopterin-eNOS Stoichiometry and Biopterin Redox Status INSIGHTS FROM CELLS WITH TET-REGULATED GTP CYCLOHYDROLASE I EXPRESSION

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 284, 期 2, 页码 1136-1144

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M805403200

关键词

-

资金

  1. British Heart Foundation [PG/05/141/20098, RG/02/006]
  2. Wellcome Trust Clinician Scientist Fellowship [GR074428/Z/04/Z]
  3. British Heart Foundation [RG/07/003/23133] Funding Source: researchfish

向作者/读者索取更多资源

Tetrahydrobiopterin (BH4) is a critical determinant of endothelial nitric-oxide synthase (eNOS) activity. In the absence of BH4, eNOS becomes uncoupled and generates superoxide rather than NO. However, the stoichiometry of intracellular BH4/eNOS interactions is not well defined, and it is unclear whether intracellular BH4 deficiency alone is sufficient to induce eNOS uncoupling. To address these questions, we developed novel cell lines with tet-regulated expression of human GTP cyclohydrolase I (GTPCH), the rate-limiting enzyme in BH4 synthesis, to selectively induce intracellular BH4 deficiency by incubation with doxycycline. These cells were stably co-transfected to express a human eNOS-green fluorescent protein fusion protein, selecting clones expressing either low (GCH/eNOS-LOW) or high (GCH/eNOS-HIGH) levels. Doxycycline abolished GTPCH mRNA expression and GTPCH protein, leading to markedly diminished total biopterin levels and a decreased ratio of BH4 to oxidized biopterins in cells expressing eNOS. Intracellular BH4 deficiency induced superoxide generation from eNOS, as assessed by N-nitro-L-arginine methyl ester inhibitable 2-hydroxyethidium generation, and attenuated NO production. Quantitative analysis of cellular BH4 versus superoxide production between GCH/eNOS-LOW and GCH/eNOS-HIGH cells revealed a striking linear relationship between eNOS protein and cellular BH4 stoichiometry, with eNOS uncoupling at eNOS: BH4 molar ratio >1. Furthermore, increasing the intracellular BH2 concentration in the presence of a constant eNOS: BH4 ratio was sufficient to induce eNOS-dependent superoxide production. This specific, reductionist approach in a cell-based system reveals that eNOS: BH4 reaction stoichiometry together with the intracellular BH4:BH2 ratio, rather than absolute concentrations of BH4, are the key determinants of eNOS uncoupling, even in the absence of exogenous oxidative stress.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据