4.6 Article

The cytokinesis formins from the nematode worm and fission yeast differentially mediate actin filament assembly

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 283, 期 35, 页码 23872-23883

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M803734200

关键词

-

资金

  1. National Institutes of Health [GM-079265]
  2. Edward Mallinckrodt, Jr. Foundation
  3. Cancer Research Foundation

向作者/读者索取更多资源

Formins drive actin filament assembly for diverse cellular processes including motility, establishing polarity, and cell division. To investigate the mechanism of contractile ring assembly in animal cells, we directly compared the actin assembly properties of formins required for cytokinesis in the nematode worm early embryo (CYK-1) and fission yeast (Cdc12p). Like Cdc12p and most other formins, CYK-1 nucleates actin filament assembly and remains processively associated with the elongating barbed end while facilitating the addition of profilin-actin above the theoretical diffusion-limited rate. However, specific properties differ significantly between Cdc12p and CYK-1. Cdc12p efficiently nucleates filaments that in the presence of profilin elongate at approximately the same rate as control filaments without formin (similar to 10.0 subunits/s). CYK-1 is an inefficient nucleator but allows filaments to elongate profilin-actin 6-fold faster than Cdc12p (similar to 60 subunits/s). Both Cdc12p and CYK-1 bind to pre-assembled actin filaments with low nanomolar affinity, but CYK-1 dissociates 2 orders of magnitude more quickly. However, CYK-1 rapidly re-associates with free barbed ends. Cdc12p allows barbed ends to elongate in the presence of excess capping protein, whereas capping protein inhibits CYK-1-mediated actin assembly. Therefore, these evolutionarily diverse formins can drive contractile ring assembly by a generally similar mechanism, but cells with unique dimensions and physical parameters might require proteins with carefully tuned actin assembly properties.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据