4.6 Article

NfuA, a new factor required for maturing Fe/S proteins in Escherichia coli under oxidative stress and iron starvation conditions

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 283, 期 20, 页码 14084-14091

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M709405200

关键词

-

向作者/读者索取更多资源

Iron/sulfur (Fe/S) proteins are central to the functioning of cells in both prokaryotes and eukaryotes. Here, we show that the yhgI gene, which we renamed nfuA, encodes a two-domain protein that is required for Fe/S biogenesis in Escherichia coli. The N-terminal domain resembles the so-called Fe/S A-type scaffold but, curiously, has lost the functionally important Cys residues. The C-terminal domain shares sequence identity with Nfu proteins. Mossbauer and UV-visible spectroscopic analyses revealed that, upon reconstitution, NfuA binds a [4Fe-4S] cluster. Moreover, NfuA can transfer this cluster to apo-aconitase. Mutagenesis studies indicated that the N-and C-terminal domains are important for NfuA function in vivo. Similarly, the functional importance of Cys residues present in the Nfu-like domain was demonstrated in vivo by introducing Cys-->Ser mutations. In vivo investigations revealed that the nfuA gene is important for E. coli to sustain oxidative stress and iron starvation. Also, combining nfuA with either isc or suf mutations led to additive phenotypic deficiencies, indicating that NfuA is a bona fide new player in Isc-and Suf-dependent Fe/S biogenesis pathways. Taken together, these data demonstrate that NfuA intervenes in the maturation of apoproteins in E. coli, allowing them to acquire Fe/S clusters. By taking into account results from numerous previous transcriptomic studies that had suggested a link between NfuA and protein misfolding, we discuss the possibility that NfuA could act as a scaffold/chaperone for damaged Fe/S proteins.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据