4.6 Article

Light-induced hydrogen bonding pattern and driving force of electron transfer in AppA BLUF domain photoreceptor

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 283, 期 45, 页码 30618-30623

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M803864200

关键词

-

向作者/读者索取更多资源

The AppA BLUF (blue light sensing using FAD) domain from Rhodobacter sphaeroides serves as a blue light-sensing photoreceptor. The charge separation process between Tyr-21 and flavin plays an important role in the light signaling state by transforming the dark state conformation to the light state one. By solving the linearized Poisson-Boltzmann equation, I calculated E(m) for Tyr-21, flavin, and redox-active Trp-104 and revealed the electron transfer (ET) driving energy. Rotation of the Gln-63 side chain that converts protein conformation from the dark state to the light state is responsible for the decrease of 150 mV in E(m) for Tyr-21, leading to the significantly larger ET driving energy in the light state conformation. The pK(alpha) values of protonation for flavin anions are essentially the same in both dark and light state crystal structures. In contrast to the ET via Tyr-21, formation of the W.(+) state results in generation of only the dark state conformation (even if the initial conformation is in the light state); this could explain why Trp-104-mediated ET deactivates the light-sensing yield and why the activity of W104A mutant is similar to that of the light-adapted native BLUF.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据