4.6 Article

Regulation of WRN protein cellular localization and enzymatic activities by SIRT1-mediated deacetylation

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 283, 期 12, 页码 7590-7598

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M709707200

关键词

-

资金

  1. NCI NIH HHS [R01 CA113371] Funding Source: Medline
  2. NIA NIH HHS [R01 AG026534] Funding Source: Medline

向作者/读者索取更多资源

Werner syndrome is an autosomal recessive disorder associated with premature aging and cancer predisposition caused by mutations of the WRN gene. WRN is a member of the RecQ DNA helicase family with functions in maintaining genome stability. Sir2, an NAD-dependent histone deacetylase, has been proven to extend life span in yeast and Caenorhabditis elegans. Mammalian Sir2 (SIRT1) has also been found to regulate premature cellular senescence induced by the tumor suppressors PML and p53. SIRT1 plays an important role in cell survival promoted by calorie restriction. Here we show that SIRT1 interacts with WRN both in vitro and in vivo; this interaction is enhanced after DNA damage. WRN can be acetylated by acetyltransferase CBP/p300, and SIRT1 can deacetylate WRN both in vitro and in vivo. WRN acetylation decreases its helicase and exonuclease activities, and SIRT1 can reverse this effect. WRN acetylation alters its nuclear distribution. Down-regulation of SIRT1 reduces WRN translocation from nucleoplasm to nucleoli after DNA damage. These results suggest that SIRT1 regulates WRN-mediated cellular responses to DNA damage through deacetylation of WRN.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据