4.6 Article

Mst2 and lats kinases regulate apoptotic function of Yes kinase-associated protein (YAP)

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 283, 期 41, 页码 27534-27546

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M804380200

关键词

-

资金

  1. Breast Cancer Coalition

向作者/读者索取更多资源

The Hippo pathway in Drosophila controls the size and shape of organs. In the fly, activation of this pathway conveys growth-inhibitory signals and promotes apoptosis in epithelial cells. We reconstituted the Hippo pathway in a human epithelial cell line and showed that, in contrast to flies, the activation of this pathway results in anti-apoptotic signals. We have shown that in human embryonic kidney (HEK) 293 cells, the complex formation between transcriptional co-activators YAPs (Yes kinase-associated proteins) and Lats kinases requires the intact WW domains of YAPs, as well as intact Pro-Pro-AA-Tyr (where AA is any amino acid) motifs in Lats kinases. These kinases cooperate with the upstream Mst2 kinase to phosphorylate YAPs at Ser127. Overexpression of YAP2 in HEK293 cells promoted apoptosis, whereas the Mst2/Lats1-induced phosphorylation of YAP partially rescued the cells from apoptotic death. Apoptotic signaling of YAP2 was mediated via stabilization of p73, which formed a complex with YAP2. All components of the Hippo pathway that we studied were localized in the cytoplasm, with the exception of YAP, which also localized in the nucleus. The localization of YAP2 in the nucleus was negatively controlled by the Lats1 kinase. Our apoptotic readout of the Hippo pathway in embryonic kidney cells represents a useful experimental system for the identification of the putative upstream receptor, membrane protein, or extracellular factor that initiates an entire signaling cascade and ultimately controls the size of organs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据