4.6 Article

Synthesis of amino acid cofactor in cysteine dioxygenase is regulated by substrate and represents a novel post-translational regulation of activity

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 283, 期 18, 页码 12188-12201

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M800044200

关键词

-

向作者/读者索取更多资源

Cysteine dioxygenase (CDO) catalyzes the conversion of cysteine to cysteinesulfinic acid and is important in the regulation of intracellular cysteine levels in mammals and in the provision of oxidized cysteine metabolites such as sulfate and taurine. Several crystal structure studies of mammalian CDO have shown that there is a cross-linked cofactor present in the active site of the enzyme. The cofactor consists of a thioether bond between the gamma-sulfur of residue cysteine 93 and the aromatic side chain of residue tyrosine 157. The exact requirements for cofactor synthesis and the contribution of the cofactor to the catalytic activity of the enzyme have yet to be fully described. In this study, therefore, we explored the factors necessary for cofactor biogenesis in vitro and in vivo and examined what effect cofactor formation had on activity in vitro. Like other cross-linked cofactor-containing enzymes, formation of the Cys-Tyr cofactor in CDO required a transition metal cofactor (Fe2+) and O-2. Unlike other enzymes, however, biogenesis was also strictly dependent upon the presence of substrate. Cofactor formation was also appreciably slower than the rates reported for other enzymes and, indeed, took hundreds of catalytic turnover cycles to occur. In the absence of the Cys-Tyr cofactor, CDO possessed appreciable catalytic activity, suggesting that the cofactor was not essential for catalysis. Nevertheless, at physiologically relevant cysteine concentrations, cofactor formation increased CDO catalytic efficiency by similar to 10-fold. Overall, the regulation of Cys-Tyr cofactor formation in CDO by ambient cysteine levels represents an unusual form of substrate-mediated feed-forward activation of enzyme activity with important physiological consequences.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据