4.6 Article

Exendin-(9-39) corrects fasting hypoglycemia in SUR-1-/- mice by lowering cAMP in pancreatic β-cells and inhibiting insulin secretion

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 283, 期 38, 页码 25786-25793

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M804372200

关键词

-

资金

  1. American Diabetes Association Career Development Award
  2. Pediatric Endocrine Career Development award in Diabetes Research [K12 DK063682]
  3. Career Development Award [K23-DK073663]
  4. Penn Diabetes Center [P30 DK 019525, R01DK53012]

向作者/读者索取更多资源

Congenital hyperinsulinism is a disorder of pancreatic beta-cell function characterized by failure to suppress insulin secretion in the setting of hypoglycemia, resulting in brain damage or death if untreated. Loss-of-function mutations in the K-ATP channel (composed of two subunits: Kir6.2 and SUR-1) are responsible for the most common and severe form of congenital hyperinsulinism. Most patients are unresponsive to available medical therapy and require palliative pancreatectomy. Similar to the human condition, the SUR-1(-/)-mouse is hypoglycemic when fasted and hyperglycemic when glucose-loaded. We have previously reported that the glucagon-like peptide-1 receptor antagonist exendin-(9-39) raises fasting blood glucose in normal mice. Here we examine the effect of exendin-(9-39) on fasting blood glucose in SUR-1(-/)-mice. Mice were randomized to receive exendin-(9-39) or vehicle. Fasting blood glucose levels in SUR-1(-/)-mice treated with exendin-(9-39) were significantly higher than in vehicle-treated mice and not different from wild-type littermates. Exendin-(9-39) did not further worsen glucose tolerance and had no effect on body weight and insulin sensitivity. Isolated islet perifusion studies demonstrated that exendin-(9-39) blocked amino acid-stimulated insulin secretion, which is abnormally increased in SUR-1(-/)-islets. Furthermore, cAMP content in SUR-1(-/)-islets was reduced by exendin-(9-39) both basally and when stimulated by amino acids, whereas cytosolic calcium levels were not affected. These findings suggest that cAMP plays a key role in K-ATP-independent insulin secretion and that the GLP-1 receptor is constitutively active in SUR-1(-/)-beta-cells. Our findings indicate that exendin-(9-39) normalizes fasting hypoglycemia in SUR-1(-/)-mice via a direct effect on insulin secretion, thereby raising exendin-(9-39) as a potential therapeutic agent for K-ATP hyperinsulinism.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据