4.6 Article

Polymerized collagen inhibits fibroblast proliferation via a mechanism involving the formation of a β1 integrin-protein phosphatase 2A-tuberous sclerosis complex 2 complex that suppresses S6K1 activity

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 283, 期 29, 页码 20350-20360

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M707489200

关键词

-

资金

  1. NHLBI NIH HHS [R01 HL114662] Funding Source: Medline

向作者/读者索取更多资源

Polymerized type I collagen suppresses fibroblast proliferation. Previous studies have implicated inhibition of fibroblast proliferation with polymerized collagen-mediated suppression of S6K1, but the molecular mechanism of the critical negative feedback loop has not yet been fully elucidated. Here, we demonstrate that polymerized collagen suppresses G(1)/S phase transition and fibroblast proliferation by a novel mechanism involving the formation of a beta 1 integrin-protein phosphatase 2A (PP2A)-tuberous sclerosis complex 2 (TSC2) complex that represses S6K1 activity. In response to fibroblast interaction with polymerized collagen, beta 1 integrin forms a complex with PP2A that targets TSC2 as a substrate. PP2A represses the level of TSC2 phosphorylation and maintains TSC2 in an activated state. Activated TSC2 negatively regulates the downstream kinase S6K1 and inhibits G(1)/S transit. Knockdown of TSC2 enables fibroblasts to overcome the anti-proliferative properties of polymerized collagen. Furthermore, we show that this reduction in TSC2 and S6K1 phosphorylation occurs largely independent of Akt. Although S6K1 activity was markedly suppressed by polymerized collagen, we found that minimal changes in Akt activity occurred. We demonstrate that up-regulation of Akt by overexpression of constitutively active phosphatidylinositol 3-kinase p110 subunit had minor effects on TSC2 and S6K1 phosphorylation. These findings demonstrate that polymerized collagen represses fibroblast proliferation by a mechanism involving the formation of a beta 1 integrin-PP2A-TSC2 complex that negatively regulates S6K1 and inhibits G(1)/S phase transition.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据