4.6 Article

Distinct Roles of Heterogeneous Nuclear Ribonuclear Protein K and microRNA-16 in Cyclooxygenase-2 RNA Stability Induced by S100b, a Ligand of the Receptor for Advanced Glycation End Products

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 283, 期 52, 页码 36221-36233

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M806322200

关键词

-

资金

  1. National Institutes of Health [R01 DK 065073]

向作者/读者索取更多资源

Advanced glycation end products play major roles in diabetic complications. They act via their receptor RAGE to induce inflammatory genes such as cyclooxygenase-2 (COX2). We examined the molecular mechanisms by which the RAGE ligand, S100b, induces COX-2 in monocytes. S100b significantly increased COX-2 mRNA accumulation in THP-1 monocytes at 2 h via mRNA stability. This was further confirmed by showing that S100b increased stability of luciferase-COX-2 3'-UTR mRNA. Chromatin immunoprecipitation and RNA immunoprecipitation revealed that S100b decreased occupancy of the DNA/RNA-binding protein, heterogeneous nuclear ribonuclear protein K (hnRNPK), at the COX-2 promoter but simultaneously increased its binding to the COX-2 3'-UTR. S100b treatment promoted the translocation of nuclear hnRNPK to cytoplasm, whereas a cytoplasmic translocation-deficient hnRNPK mutant inhibited S100b-induced COX-2 mRNA stability. Small interfering RNA-mediated specific knockdown of hnRNPK blocked S100b-induced COX-2 mRNA stability, whereas on the other hand, overexpression of hnRNPK increased S100b-induced COX-2 mRNA stability. S100b promoted the release of entrapped COX-2 mRNA from cytoplasmic processing bodies, sites of mRNA degradation. Furthermore, S100b significantly down-regulated the expression of a key microRNA, miR-16, which can destabilize COX-2 mRNA by binding to its 3'-UTR. MiR-16 inhibitor oligonucleotides increased, whereas, conversely, miR-16 mimic oligonucleotides decreased COX-2 mRNA stability in monocytes, further supporting the inhibitory effects of miR-16. Interestingly, hnRNPK knockdown increased miR-16 binding to COX-2 3'-UTR, indicating a cross-talk between them. These new results demonstrate that diabetic stimuli can efficiently stabilize inflammatory genes via opposing actions of key RNA-binding proteins and miRs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据