4.6 Article

A Novel Interaction Linking the FAS-II and Phthiocerol Dimycocerosate (PDIM) Biosynthetic Pathways

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 283, 期 46, 页码 31719-31725

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M802169200

关键词

-

资金

  1. CSU-Tuberculosis Research Materials and Vaccine Testing
  2. National Institutes of Health [N01-A1-75320, AI44639, T32 AI007539]
  3. U. S. Department of Education Graduate Assistance in Areas of National Need (GAANN)
  4. National Research Service Award Predoctoral Fellowship

向作者/读者索取更多资源

The fatty acid biosynthesis (FAS-II) pathway in Mycobacterium tuberculosis generates long chain fatty acids that serve as the precursors to mycolic acids, essential components of the mycobacterial cell wall. Enzymes in the FAS-II pathway are thought to form one or more noncovalent multi-enzyme complexes within the cell, and a bacterial two-hybrid screen was used to search for missing components of the pathway and to furnish additional data on interactions involving these enzymes in vivo. Using the FAS-II beta-ketoacyl synthase, KasA, as bait, an extensive bacterial two-hybrid screen of a M. tuberculosis genome fragment library unexpectedly revealed a novel interaction between KasA and PpsB as well as PpsD, two polyketide modules involved in the biosynthesis of the virulence lipid phthiocerol dimycocerosate (PDIM). Sequence analysis revealed that KasA interacts with PpsB and PpsD in the region of the acyl carrier domain of each protein, raising the possibility that lipids could be transferred between the FAS-II and PDIM biosynthetic pathways. Subsequent studies utilizing purified proteins and radiolabeled lipids revealed that fatty acids loaded onto PpsB were transferred to KasA and also incorporated into long chain fatty acids synthesized using a Mycobacterium smegmatis lysate. These data suggest that in addition to producing PDIMs, the growing phthiocerol product can also be shuttled into the FAS-II pathway via KasA as an entry point for further elongation. Interactions between these biosynthetic pathways may exist as a simple means to increase mycobacterial lipid diversity, enhancing functionality and the overall complexity of the cell wall.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据