4.6 Article

Extracellular Protons Regulate Human ENaC by Modulating Na+ Self-inhibition

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 284, 期 2, 页码 792-798

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M806954200

关键词

-

资金

  1. National Institutes of Health

向作者/读者索取更多资源

The epithelial Na+ channel, ENaC, is exposed to a wide range of proton concentrations in the kidney, lung, and sweat duct. We, therefore, tested whether pH alters ENaC activity. In Xenopus oocytes expressing human alpha-, beta-, and gamma ENaC, amiloride-sensitive current was altered by protons in the physiologically relevant range ( pH 8.5-6.0). Compared with pH 7.4, acidic pH increased ENaC current, whereas alkaline pH decreased current (pH(50) = 7.2). Acidic pH also increased ENaC current in H441 epithelia and in human primary airway epithelia. In contrast to human ENaC, pH did not alter rat ENaC current, indicating that there are species differences in ENaC regulation by protons. This resulted predominantly from species differences in gamma ENaC. Maneuvers that lock ENaC in a high open-probability state (DEG mutation, proteolytic cleavage) abolished the effect of pHon human ENaC, indicating that protons alter ENaC current by modulating channel gating. Previous work showed that ENaC gating is regulated in part by extracellular Na+ (Na+ self-inhibition). Based on several observations, we conclude that protons regulate ENaC by altering Na+ self-inhibition. First, protons reduced Na+ self- inhibition in a dose-dependent manner. Second, ENaC regulation by pH was abolished by removing Na+ from the extracellular bathing solution. Third, mutations that alter Na+ self- inhibition produced corresponding changes in ENaC regulation by pH. Together, the data support a model in which protons modulate ENaC gating by relieving Na+ self- inhibition. We speculate that this may be an important mechanism to facilitate epithelial Na+ transport under conditions of acidosis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据