4.5 Article

Contrasting patterns and mechanisms of spatial turnover for native and exotic freshwater fish in Europe

期刊

JOURNAL OF BIOGEOGRAPHY
卷 36, 期 10, 页码 1899-1912

出版社

WILEY
DOI: 10.1111/j.1365-2699.2009.02107.x

关键词

Biogeography; dispersal limitation; distance decay; Europe; environmental filtering; exotic species; freshwater fish; nestedness

资金

  1. French Ministry of Research [ANR-06-BDIV-010]
  2. USGS Lower Colorado River Aquatic GAP Program

向作者/读者索取更多资源

Aim We compare the distribution patterns of native and exotic freshwater fish in Europe, and test whether the same mechanisms (environmental filtering and/or dispersal limitation) govern patterns of decrease in similarity of native and exotic species composition over geographical distance (spatial species turnover). Locations Major river basins of Europe. Methods Data related to geography, habitat diversity, regional climate and species composition of native and exotic freshwater fish were collated for 26 major European river basins. We explored the degree of nestedness in native and exotic species composition, and quantified compositional similarity between river basins according to the beta-sim (independent of richness gradient) and Jaccard (dependent of richness gradient) indices of similarity. Multiple regression on distance matrices and variation-partitioning approaches were used to quantify the relative roles of environmental filtering and dispersal limitation in shaping patterns of decreasing compositional similarity over geographical distance. Results Native and exotic species exhibited significant nested patterns of species composition, indicating that differences in fish species composition between river basins are primarily the result of species loss, rather than species replacement. Both native and exotic compositional similarity decreased significantly with increasing geographical distance between river basins. However, gradual changes in species composition with geographical distance were found only for exotic species. In addition, exotic species displayed a higher rate of similarity decay (higher species turnover rate) with geographical distance, compared with native species. Lastly, the majority of explained variation in exotic compositional similarity was uniquely related to geography, whereas native compositional similarity was either uniquely explained by geography or jointly explained by environment and geography. Main conclusions Our study suggests that large-scale patterns of spatial turnover for exotic freshwater fish in Europe are generated by human-mediated dispersal limitation, whereas patterns of spatial turnover for native fish result from both dispersal limitation relative to historical events (isolation by mountain ranges, glacial history) and environmental filtering.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据