4.5 Article

Environmental effects on Neotropical liana species richness

期刊

JOURNAL OF BIOGEOGRAPHY
卷 36, 期 8, 页码 1561-1572

出版社

WILEY
DOI: 10.1111/j.1365-2699.2009.02099.x

关键词

Disturbance; liana species richness; Neotropics; rainfall; seasonality; soil; structural equation modelling; tree species richness

资金

  1. University of Leeds
  2. NERC
  3. Leverhulme Trust Research Fellowship
  4. Natural Environment Research Council [NE/B503384/1] Funding Source: researchfish

向作者/读者索取更多资源

Aim Lianas differ physiologically from trees, and therefore their species-richness patterns and potential climate-change responses might also differ. However, multivariate assessments of spatial patterns in liana species richness and their controls are lacking. Our aim in this paper is to identify the environmental factors that best explain the variation in liana species richness within tropical forests. Location Lowland and montane Neotropical forests. Methods We quantified the contributions of environmental variables and liana and tree-and-shrub abundance to the species richness of lianas, trees and shrubs >= 2.5 cm in diameter using a subset of 65 standardized (0.1 ha) plots from 57 Neotropical sites from a global dataset collected by the late Alwyn Gentry. We used both regression and structural equation modelling to account for the effects of environmental variables (climate, soil and disturbance) and liana density on liana species richness, and we compared the species-richness patterns of lianas with those of trees and shrubs. Results We found that, after accounting for liana density, dry-season length was the dominant predictor of liana species richness. In addition, liana species richness was also related to stand-level wood density (a proxy for disturbance) in lowland forests, a pattern that has not hitherto been shown across such a large study region. Liana species richness had a weak association with soil properties, but the effect of soil may be obscured by the strong correlation between soil properties and climate. The diversity patterns of lianas and of trees and shrubs were congruent: wetter forests had a greater species richness of all woody plants. Main conclusions The primary association of both liana and tree-and-shrub species richness with water availability suggests that, if parts of the Neotropics become drier as a result of climate change, substantial declines in the species richness of woody plants at the stand level may be anticipated.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据