4.5 Article

Environmental influences on spatial and temporal patterns of body-size variation in California ground squirrels (Spermophilus beecheyi)

期刊

JOURNAL OF BIOGEOGRAPHY
卷 35, 期 4, 页码 602-613

出版社

WILEY
DOI: 10.1111/j.1365-2699.2007.01836.x

关键词

Bergmann's rule; body size; California ground squirrel; climate change; last glacial maximum; North America; precipitation; Spermophilus beecheyi

向作者/读者索取更多资源

Aim In order to understand how ground squirrels (Spermophilus beecheyi) may respond to future environmental change, we investigated five biotic and environmental factors potentially responsible for explaining body-size variation in this species across California. We examined the concordance of spatial patterns with temporal body-size change since the last glacial maximum (LGM). Location California, western North America. Methods We quantified body size of modern populations of ground squirrels (n = 81) and used a model-selection approach to determine the best variables (sex, vegetation, number of congeners, temperature and/or precipitation) explaining geographical variation in body size among modern populations. We also quantified body size of one fossil population in northern California (n = 39) and compared temporal body-size change in S. beecheyi at this location since the LGM with model predictions. Results Body size of modern populations conformed to Bergmann's rule, with larger individuals in northern (wetter and cooler) portions of California. However, the models suggest that precipitation, rather than temperature or other variables, may best explain variation in body size across modern spatial gradients. Our conclusion is supported by the temporal data, demonstrating that the body size of S. beecheyi has increased in northern California since the LGM, concordant with precipitation but not temperature change in the region. Main conclusions Precipitation, rather than temperature, vegetation or number of congeneric species, was the main factor explaining both spatial and temporal patterns of body-size variation in S. beecheyi. The integration of space and time provides a powerful mechanism for predicting how local populations may respond to current and future climatic changes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据