4.1 Article

Antimicrobial regenerated cellulose/nano-silver fiber without leaching

期刊

出版社

SAGE PUBLICATIONS LTD
DOI: 10.1177/0883911514556960

关键词

Regenerated cellulose fiber; nano-silver; antimicrobial property; ionic liquid; crystallinity; X-ray diffraction

资金

  1. NSF [0741973]

向作者/读者索取更多资源

The formation of antimicrobial regenerated cellulose fibers using an ionic liquid solvent, 1-butyl-3-methylimidazolium chloride, and silver nanoparticles was studied. The cellulose preparation and dispersion efficiency of the silver nanoparticles in the solvent were evaluated via scanning electron microscope and transmission electron microscopy in terms of different processing conditions. The influence of silver nanoparticles on regenerated cellulose fiber crystallization and strength was examined using a wide angle X-ray diffractometry and tensiometry, respectively. The bioactive efficacy of the cellulose/nano-silver fiber was tested in accordance with the standard method of ASTM E 2149-10. The cellulose/nano-silver fibers were bioactive and killed Escherichia coli almost completely without any leaching problems. The addition of nano-silver significantly increased the cellulose fiber tensile strength and modulus with an insignificant reduction in fiber elongation, and a slower thermal decomposition rate, evidenced by increased fiber crystallinity. Higher processing temperatures improved the nano-silver dispersion efficiency. The final nano-silver suspension in the regenerated cellulose matrix was composed of scattered clusters with an average size of 700nm and a distribution density of 14,098mm(-2).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据