4.4 Article

Biofilm formation in moderately halophilic bacteria is influenced by varying salinity levels

期刊

JOURNAL OF BASIC MICROBIOLOGY
卷 52, 期 5, 页码 566-572

出版社

WILEY
DOI: 10.1002/jobm.201100253

关键词

Biofilm; Exopolysaccharide; Salinity; Cicer arietinum

资金

  1. HEC Pakistan (Higher Education Commission Indigenous 5000 Ph.D. Fellowship Program-Batch-IV)

向作者/读者索取更多资源

Bacteria in a biofilm have a co-dependent lifestyle resulting in a harmonized and complex coordination of the bacterial cells within an exopolysaccharide (EPS) matrix. We hypothesized that biofilm formation and EPS production in salt-tolerant bacteria are helpful for plant growth improvement in saline soil, but that they are influenced differently. To investigate this hypothesis, we tested the effect of different salinity levels on the biofilm formation of the bacterial strains PAa6 (Halomonas meridiana), HT2 (Kushneria indalinina) and ST2 (Halomonas aquamarina) on different abiotic and biotic surfaces. Maximum biofilm formation was established at 1 M salt concentration. However, EPS production was maximal at 01 M NaCl stress. We also studied the effect of salt stress on EPS produced by the bacterial strains and confirmed the presence of EPS on Cicer arietinum var. CM 98 roots and in soil at different salinity levels, using Alcian blue staining. Overall, the strain PAa6 was more effective in biofilm formation and EPS production. Under saline and non-saline conditions, this strain also colonized the plant roots more efficiently as compared to the other two strains. We conclude that the strain PAa6 has the potential of biofilm formation and EPS production at different salinity levels. The presence of EPS in the biofilm helped the bacterial strains to better colonize the roots. (C) 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据