4.4 Article

AmrZ Modulates Pseudomonas aeruginosa Biofilm Architecture by Directly Repressing Transcription of the psl Operon

期刊

JOURNAL OF BACTERIOLOGY
卷 195, 期 8, 页码 1637-1644

出版社

AMER SOC MICROBIOLOGY
DOI: 10.1128/JB.02190-12

关键词

-

资金

  1. Public Health Service [AI061396, HL058334]
  2. College of Medicine Systems and Integrated Biology Training Program at Ohio State University
  3. American Heart Association Great Rivers Affiliate Predoctoral Fellowship

向作者/读者索取更多资源

Pseudomonas aeruginosa strains recovered from chronic pulmonary infections in cystic fibrosis patients are frequently mucoid. Such strains express elevated levels of alginate but reduced levels of the aggregative polysaccharide Psl; however, the mechanistic basis for this regulation is not completely understood. Elevated pslA expression was observed in an amrZ null mutant and in strains expressing a DNA-binding-deficient AmrZ. AmrZ is a transcription factor that positively regulates twitching motility and alginate synthesis, two phenotypes involved in P. aeruginosa biofilm development. AmrZ bound directly to the pslA promoter in vitro, and molecular analyses indicate that AmrZ represses psl expression by binding to a site overlapping the promoter. Altered expression of amrZ in nonmucoid strains impacted biofilm structure and architecture, as structured microcolonies were observed with low AmrZ production and flat biofilms with amrZ overexpression. These biofilm phenotypes correlated with Psl levels, since we observed elevated Psl production in amrZ mutants and lower Psl production in amrZ-overexpressing strains. These observations support the hypothesis that AmrZ is a multifunctional regulator mediating transition of P. aeruginosa biofilm infections from colonizing to chronic biofilms through repression of the psl operon while activating the algD operon.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据