4.4 Article

Activity and Transcriptional Regulation of Bacterial Protein-Like Glycerol-3-Phosphate Dehydrogenase of the Haloarchaea in Haloferax volcanii

期刊

JOURNAL OF BACTERIOLOGY
卷 193, 期 17, 页码 4469-4476

出版社

AMER SOC MICROBIOLOGY
DOI: 10.1128/JB.00276-11

关键词

-

资金

  1. NIH R01 [GM057498, DOE DE-FG02-05ER15650]

向作者/读者索取更多资源

Glycerol is a primary energy source for heterotrophic haloarchaea and a major component of salty biodiesel waste. Glycerol is catabolized solely by glycerol kinase (encoded by glpK) to glycerol-3-phosphate (G3P) in Haloferax volcanii. Here we characterized the next critical step of this metabolic pathway: the conversion of G3P to dihydroxyacetone phosphate by G3P dehydrogenase (G3PDH). H. volcanii harbors two putative G3PDH operons: (i) glpA1B1C1, located on the chromosome within the neighborhood of glpK, and (ii) glpA2B2C2, on megaplasmid pHV4. Analysis of knockout strains revealed that glpA1 (and not glpA2) is required for growth on glycerol. However, both glpA1 and glpA2 could complement a glpA1 knockout strain (when expressed from a strong promoter in trans) and were required for the total G3PDH activity of cell lysates. The glpA1B1C1, glpK, glpF (encoding a putative glycerol facilitator), and ptsH2 (encoding a homolog of the bacterial phosphotransferase system protein Hpr) genes were transcriptionally linked and appeared to be under the control of a strong, G3P-inducible promoter upstream of glpA1. Overall, this study provides fundamental insights into glycerol metabolism in H. volcanii and enhances our understanding of central metabolic pathways of haloarchaea.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据