4.4 Article

Glycosylation of Pilin and Nonpilin Protein Constructs by Pseudomonas aeruginosa 1244

期刊

JOURNAL OF BACTERIOLOGY
卷 192, 期 22, 页码 5972-5981

出版社

AMER SOC MICROBIOLOGY
DOI: 10.1128/JB.00007-10

关键词

-

资金

  1. NIH [AI054929]

向作者/读者索取更多资源

PilO is an oligosaccharyl transferase (OTase) that catalyzes the O-glycosylation of Pseudomonas aeruginosa 1244 pilin by adding a single O-antigen repeating unit to the beta carbon of the C-terminal residue (a serine). While PilO has an absolute requirement for Ser/Thr at this position, it is unclear if this enzyme must recognize other pilin features. To test this, pilin constructs containing peptide extensions terminating with serine were tested for the ability to support glycosylation. It was found that a 15-residue peptide, which had been modeled on the C-proximal region of strain 1244 pilin, served as a PilO substrate when it was expressed on either group II or group III pilins. In addition, adding a 3-residue extension culminating in serine to the C terminus of a group III pilin supported PilO activity. A protein fusion composed of strain 1244 pilin linked at its C terminus with Escherichia coli alkaline phosphatase (which, in turn, contained the above-mentioned 15 amino acids at its C terminus) was glycosylated by PilO. E. coli alkaline phosphatase lacking the pilin membrane anchor and containing the 15-residue peptide was also glycosylated by PilO. Addition of the 3-residue extension did not allow glycosylation of either of these constructs. Site-directed mutagenesis of strain 1244 pilin residues of the C-proximal region common to the group I proteins showed that this structure was not required for glycosylation. These experiments indicate that pilin common sequence is not required for glycosylation and show that nonpilin protein can be engineered to be a PilO substrate.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据