4.4 Article

Multiple Signals Direct the Assembly and Function of a Type 1 Secretion System

期刊

JOURNAL OF BACTERIOLOGY
卷 192, 期 15, 页码 3861-3869

出版社

AMER SOC MICROBIOLOGY
DOI: 10.1128/JB.00178-10

关键词

-

资金

  1. Institut Pasteur Paris

向作者/读者索取更多资源

Type 1 secretion systems (T1SS) are present in a wide range of Gram-negative bacteria and are involved in the secretion of diverse substrates such as proteases, lipases, and hemophores. T1SS consist of three proteins: an inner membrane ABC (ATP binding cassette) protein, a periplasmic adaptor, and an outer membrane channel of the TolC family. Assembly of the tripartite complex is transient and induced upon binding of the substrate to the ABC protein. It is generally accepted that T1SS-secreted proteins have a C-terminal secretion signal required for secretion and that this signal interacts with the ABC protein. However, we have previously shown that for the Serratia marcescens hemophore HasA, interactions with the ABC protein and subsequent T1SS assembly require additional regions. In this work, we characterize these regions and demonstrate that they are numerous, distributed throughout the HasA polypeptide, and most likely linear. Together with the C-terminal signal, these elements maximize the secretion of HasA. The data also show that the C-terminal signal of HasA triggers HasD-driven ATP hydrolysis, leading to disassembly of the complex. These data support a model of type 1 secretion involving a multistep interaction between the substrate and the ABC protein that stabilizes the assembled secretion system until the C terminus is presented. This model also supports tight coupling between synthesis and secretion.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据