4.4 Article

The Siderophore Pyoverdine of Pseudomonas syringae pv. tabaci 6605 Is an Intrinsic Virulence Factor in Host Tobacco Infection

期刊

JOURNAL OF BACTERIOLOGY
卷 192, 期 1, 页码 117-126

出版社

AMER SOC MICROBIOLOGY
DOI: 10.1128/JB.00689-09

关键词

-

资金

  1. Program for Promotion of Basic Research Activities for Innovative Bioscience (PROBRAIN)

向作者/读者索取更多资源

To investigate the role of iron uptake mediated by the siderophore pyoverdine in the virulence of the plant pathogen Pseudomonas syringae pv. tabaci 6605, three predicted pyoverdine synthesis-related genes, pvdJ, pvdL, and fpvA, were mutated. The pvdJ, pvdL, and fpvA genes encode the pyoverdine side chain peptide synthetase III L-Thr-L-Ser component, the pyoverdine chromophore synthetase, and the TonB-dependent ferripyoverdine receptor, respectively. The Delta pvdJ and Delta pvdL mutants were unable to produce pyoverdine in mineral salts glucose medium, which was used for the iron-depleted condition. Furthermore, the Delta pvdJ and Delta pvdL mutants showed lower abilities to produce tabtoxin, extracellular polysaccharide, and acyl homoserine lactones (AHLs), which are quorum-sensing molecules, and consequently had reduced virulence on host tobacco plants. In contrast, all of the mutants had accelerated swarming ability and increased biosurfactant production, suggesting that swarming motility and biosurfactant production might be negatively controlled by pyoverdine. Scanning electron micrographs of the surfaces of tobacco leaves inoculated with the mutant strains revealed only small amounts of extracellular polymeric matrix around these mutants, indicating disruption of the mature biofilm. Tolerance to antibiotics was drastically increased for the Delta pvdL mutant, as for the Delta psyI mutant, which is defective in AHL production. These results demonstrated that pyoverdine synthesis and the quorum-sensing system of Pseudomonas syringae pv. tabaci 6605 are indispensable for virulence in host tobacco infection and that AHL may negatively regulate tolerance to antibiotics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据