4.4 Article

Redundant Hydrogen Peroxide Scavengers Contribute to Salmonella Virulence and Oxidative Stress Resistance

期刊

JOURNAL OF BACTERIOLOGY
卷 191, 期 14, 页码 4605-4614

出版社

AMER SOC MICROBIOLOGY
DOI: 10.1128/JB.00144-09

关键词

-

资金

  1. ANR
  2. CNRS
  3. Universite de la Mediterranee
  4. Ministere de la Recherche
  5. Fondation pour la Recherche Medicale (FRM).

向作者/读者索取更多资源

Salmonella enterica serovar Typhimurium is an intracellular pathogen that can survive and replicate within macrophages. One of the host defense mechanisms that Salmonella encounters during infection is the production of reactive oxygen species by the phagocyte NADPH oxidase. Among them, hydrogen peroxide (H2O2) can diffuse across bacterial membranes and damage biomolecules. Genome analysis allowed us to identify five genes encoding H2O2 degrading enzymes: three catalases (KatE, KatG, and KatN) and two alkyl hydroperoxide reductases (AhpC and TsaA). Inactivation of the five cognate structural genes yielded the HpxF(-) mutant, which exhibited a high sensitivity to exogenous H2O2 and a severe survival defect within macrophages. When the phagocyte NADPH oxidase was inhibited, its proliferation index increased 3.7-fold. Moreover, the overexpression of katG or tsaA in the HpxF(-) background was sufficient to confer a proliferation index similar to that of the wild type in macrophages and a resistance to millimolar H2O2 in rich medium. The HpxF(-) mutant also showed an attenuated virulence in a mouse model. These data indicate that Salmonella catalases and alkyl hydroperoxide reductases are required to degrade H2O2 and contribute to the virulence. This enzymatic redundancy highlights the evolutionary strategies developed by bacterial pathogens to survive within hostile environments.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据