4.4 Article

Decarboxylating and Nondecarboxylating Glutaryl-Coenzyme A Dehydrogenases in the Aromatic Metabolism of Obligately Anaerobic Bacteria

期刊

JOURNAL OF BACTERIOLOGY
卷 191, 期 13, 页码 4401-4409

出版社

AMER SOC MICROBIOLOGY
DOI: 10.1128/JB.00205-09

关键词

-

资金

  1. Deutsche Forschungsgemeinschaft [BO 1565/6-1]

向作者/读者索取更多资源

In anaerobic bacteria using aromatic growth substrates, glutaryl-coenzyme A (CoA) dehydrogenases (GDHs) are involved in the catabolism of the central intermediate benzoyl-CoA to three acetyl-CoAs and CO2. In this work, we studied GDHs from the strictly anaerobic, aromatic compound-degrading organisms Geobacter metallireducens (GDH(Geo)) (Fe[III] reducing) and Desulfococcus multivorans (GDH(Des)) (sulfate reducing). GDH(Geo) was purified from cells grown on benzoate and after the heterologous expression of the benzoate-induced bamM gene. The gene coding for GDH(Des) was identified after screening of a cosmid gene library. Reverse transcription-PCR revealed that its expression was induced by benzoate; the product was heterologously expressed and isolated. Both wild-type and recombinant GDH(Geo) catalyzed the oxidative decarboxylation of glutaryl-CoA to crotonyl-CoA at similar rates. In contrast, recombinant GDH(Des) catalyzed only the dehydrogenation to glutaconyl-CoA. The latter compound was decarboxylated subsequently to crotonyl-CoA by the addition of membrane extracts from cells grown on benzoate in the presence of 20 mM NaCl. All GDH enzymes were purified as homotetramers of a 43- to 44-kDa subunit and contained 0.6 to 0.7 flavin adenine dinucleotides (FADs)/monomer. The kinetic properties for glutaryl-CoA conversion were as follows: for GDH(Geo), the K-m was 30 +/- 2 mu M and the V-max was 3.2 +/- 0.2 mu mol min(-1) mg(-1), and for GDH(Des), the K-m was 52 +/- 5 mu M and the V-max was 11 +/- 1 mu mol min(-1) mg(-1). GDH(Des) but not GDH(Geo) was inhibited by glutaconyl-CoA. Highly conserved amino acid residues that were proposed to be specifically involved in the decarboxylation of the intermediate glutaconyl-CoA were identified in GDH(Geo) but are missing in GDH(Des). The differential use of energy-yielding/energy-demanding enzymatic processes in anaerobic bacteria that degrade aromatic compounds is discussed in view of phylogenetic relationships and constraints of overall energy metabolism.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据