4.4 Article

The PqrR Transcriptional Repressor of Pseudomonas aeruginosa Transduces Redox Signals via an Iron-Containing Prosthetic Group

期刊

JOURNAL OF BACTERIOLOGY
卷 191, 期 21, 页码 6709-6721

出版社

AMER SOC MICROBIOLOGY
DOI: 10.1128/JB.00932-09

关键词

-

资金

  1. Royal Thai Government
  2. UMass Amherst Faculty Research Grant.

向作者/读者索取更多资源

Inducible defenses against oxidative stress are coordinated by redox-sensitive transcription factors that transduce oxidative damage into differential gene expression. The opportunistic human pathogen Pseudomonas aeruginosa has evolved under physiological and host-derived sources of oxidative stress. Previous work showed that the pqrABC and pqrR genes of P. aeruginosa, all lacking known functions, were induced by treatment of three different isolates of P. aeruginosa with paraquat (PQ), a superoxide-producing agent. Insertional mutation of the pqrABCR genes resulted in hypersensitive phenotypes to a variety of oxidants, although the hypersensitivity to PQ was marginal. Mutation of pqrR and complementation assays showed that PqrR regulated the pqrABC genes in response to PQ. PqrR, a member of the MarR family of transcriptional regulators, contains a C-terminal region with four conserved cysteines, which suggested redox-regulated transcriptional activity. Purified PqrR bound to two discrete sites at the pqrA and pqrR regulatory regions. The in vitro DNA binding activity of PqrR was decreased by exposure to air and reconstituted by treatment with DL-dithiothreitol. Elemental analysis and preliminary electron paramagnetic resonance experiments showed that PqrR contains iron. Interestingly, site-directed mutagenesis of C-terminal cysteines demonstrated that the four conserved cysteine residues are essential for in vivo redox sensing by PqrR.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据