4.4 Article

Genome Sequences of Three Agrobacterium Biovars Help Elucidate the Evolution of Multichromosome Genomes in Bacteria

期刊

JOURNAL OF BACTERIOLOGY
卷 191, 期 8, 页码 2501-2511

出版社

AMER SOC MICROBIOLOGY
DOI: 10.1128/JB.01779-08

关键词

-

资金

  1. National Science Foundation [0333297, 0603491, 0736671]
  2. M.J. Murdock Charitable Trust Life Sciences program [2004262, 2006245]
  3. Howard Hughes Medical Institute [52005125]
  4. Conselho Nacional de Desenvolvimento Cientifico e Tecnologico fellowship [200447/2007-6]
  5. Monsanto Company
  6. Direct For Biological Sciences
  7. Division Of Integrative Organismal Systems [0746066] Funding Source: National Science Foundation
  8. Direct For Education and Human Resources
  9. Division Of Undergraduate Education [0603491] Funding Source: National Science Foundation
  10. Direct For Education and Human Resources
  11. Division Of Undergraduate Education [0736671] Funding Source: National Science Foundation
  12. Emerging Frontiers
  13. Direct For Biological Sciences [0333297] Funding Source: National Science Foundation

向作者/读者索取更多资源

The family Rhizobiaceae contains plant-associated bacteria with critical roles in ecology and agriculture. Within this family, many Rhizobium and Sinorhizobium strains are nitrogen-fixing plant mutualists, while many strains designated as Agrobacterium are plant pathogens. These contrasting lifestyles are primarily dependent on the transmissible plasmids each strain harbors. Members of the Rhizobiaceae also have diverse genome architectures that include single chromosomes, multiple chromosomes, and plasmids of various sizes. Agrobacterium strains have been divided into three biovars, based on physiological and biochemical properties. The genome of a biovar I strain, A. tumefaciens C58, has been previously sequenced. In this study, the genomes of the biovar II strain A. radiobacter K84, a commercially available biological control strain that inhibits certain pathogenic agrobacteria, and the biovar III strain A. vitis S4, a narrow-host-range strain that infects grapes and invokes a hypersensitive response on nonhost plants, were fully sequenced and annotated. Comparison with other sequenced members of the Alphaproteobacteria provides new data on the evolution of multipartite bacterial genomes. Primary chromosomes show extensive conservation of both gene content and order. In contrast, secondary chromosomes share smaller percentages of genes, and conserved gene order is restricted to short blocks. We propose that secondary chromosomes originated from an ancestral plasmid to which genes have been transferred from a progenitor primary chromosome. Similar patterns are observed in select Beta- and Gammaproteobacteria species. Together, these results define the evolution of chromosome architecture and gene content among the Rhizobiaceae and support a generalized mechanism for second-chromosome formation among bacteria.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据