4.4 Article

Swarming of Pseudomonas aeruginosa is a complex adaptation leading to increased production of virulence factors and antibiotic resistance

期刊

JOURNAL OF BACTERIOLOGY
卷 190, 期 8, 页码 2671-2679

出版社

AMER SOC MICROBIOLOGY
DOI: 10.1128/JB.01659-07

关键词

-

向作者/读者索取更多资源

In addition to exhibiting swimming and twitching motility, Pseudomonas aeruginosa is able to swarm on semisolid (viscous) surfaces. Recent studies have indicated that swarming is a more complex type of motility influenced by a large number of different genes. To investigate the adaptation process involved in swarming motility, gene expression profiles were analyzed by performing microarrays on bacteria from the leading edge of a swarm zone compared to bacteria growing in identical medium under swimming conditions. Major shifts in gene expression patterns were observed under swarming conditions, including, among others, the overexpression of a large number of virulence-related genes such as those encoding the type III secretion system and its effectors, those encoding extracellular proteases, and those associated with iron transport. In addition, swarming cells exhibited adaptive antibiotic resistance against polymyxin B, gentamicin, and ciprofloxacin compared to what was seen for their planktonic (swimming) counterparts. By analyzing a large subset of up-regulated genes, we were able to show that two virulence genes, lasB and pvdQ, were required for swarming motility. These results clearly favored the conclusion that swarming of P. aeruginosa is a complex adaptation process in response to a viscous environment resulting in a substantial change in virulence gene expression and antibiotic resistance.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据