4.4 Article

Mechanism of 4-Nitrophenol Oxidation in Rhodococcus sp Strain PN1: Characterization of the Two-Component 4-Nitrophenol Hydroxylase and Regulation of Its Expression

期刊

JOURNAL OF BACTERIOLOGY
卷 190, 期 22, 页码 7367-7374

出版社

AMER SOC MICROBIOLOGY
DOI: 10.1128/JB.00742-08

关键词

-

资金

  1. Japan Society for Promotion of Science (JSPS) [19560778]
  2. Department of Science and Technology, India (DST)
  3. Japan Science and Technology Agency (JST)
  4. Strategic Japanese-Indian Cooperative
  5. Grants-in-Aid for Scientific Research [19560778] Funding Source: KAKEN

向作者/读者索取更多资源

4-Nitrophenol (4-NP) is a toxic product of the hydrolysis of organophosphorus pesticides such as parathion in soil. Rhodococcus sp. strain PN1 degrades 4-NP via 4-nitrocatechol (4-NC) for use as the sole carbon, nitrogen, and energy source. A 5-kb EcoRI DNA fragment previously cloned from PN1 contained a gene cluster (nphRA1A2) involved in 4-NP oxidation. From sequence analysis, this gene cluster is expected to encode an AraC/XyIS family regulatory protein (NphR) and a two-component 4-NP hydroxylase (NphA1 and NphA2). A transcriptional assay in a Rhodococcus strain revealed that the transcription of nphA1 is induced by only 4-NP ( of several phenolic compounds tested) in the presence of nphR, which is constitutively expressed. Disruption of nphR abolished transcriptional activity, suggesting that nphR encodes a positive regulatory protein. The two proteins of the 4-NP hydroxylase, NphA1 and NphA2, were independently expressed in Escherichia coli and purified by ion-exchange chromatography or affinity chromatography. The purified NphA2 reduced flavin adenine dinucleotide ( FAD) with the concomitant oxidation of NADH, while the purified NphA1 oxidized 4-NP into 4-NC almost quantitatively in the presence of FAD, NADH, and NphA2. This functional analysis, in addition to the sequence analysis, revealed that this enzyme system belongs to the two-component flavin-diffusible monooxygenase family. The 4-NP hydroxylase showed comparable oxidation activities for phenol and 4-chlorophenol to that for 4-NP and weaker activities for 3-NP and 4-NC.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据