4.1 Article

Sulfur dioxide in the tropical marine boundary layer: dry deposition and heterogeneous oxidation observed during the Pacific Atmospheric Sulfur Experiment

期刊

JOURNAL OF ATMOSPHERIC CHEMISTRY
卷 63, 期 1, 页码 13-32

出版社

SPRINGER
DOI: 10.1007/s10874-010-9155-0

关键词

Sulfur cycle; Marine boundary layer; Sea salt aerosols; S(IV) oxidation; Dry deposition

资金

  1. National Science Foundation [ATM-0627227]

向作者/读者索取更多资源

Research flights with the National Center for Atmospheric Research (NCAR) C-130 airborne laboratory were conducted over the equatorial ocean during the Pacific Atmospheric Sulfur Experiment (PASE). The focused, repetitive flight plans provided a unique opportunity to explore the principal pathways of sulfur processing in remote marine environments in close detail. Fast airborne measurements of SO2 using the Drexel University APIMS (Atmospheric Pressure Ionization Mass Spectrometer) instrument further provided unprecedented insight into the complete budget of this important sulfur gas. In general, turbulent mixing in the marine boundary layer (MBL) continuously depletes SO2 due to the shallow convection of the tropical trade wind regime by venting the gas into the buffer layer (BuL) above. However, on nearly one-third of the flights a net import of SO2 into the MBL from the BuL was observed. Concurrent measurements of the DMS budget allowed for a heterogeneous S(IV) oxidation rate to be inferred from the SO2 budget residual. The average heterogeneous loss rate was found to be 0.05 h(-1), which taken in conjunction with the observed aerosol surface area distributions and O-3 levels indicates that the supermicron aerosols maintain a near neutral pH. The average dry deposition velocity of SO2 was found to be 0.4 cm s(-1), about 30% lower than predicted by standard parameterizations. The yield of SO2 from DMS oxidation was found to be near unity. The mission averages indicate that approximately 57% of the SO2 in the MBL is lost to aerosols, 27% is subject to dry deposition, 7% is mixed into the BuL, and 10% is oxidized by OH.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据