4.8 Article

Long-lived nanosecond spin relaxation and spin coherence of electrons in monolayer MoS2 and WS2

期刊

NATURE PHYSICS
卷 11, 期 10, 页码 830-U187

出版社

NATURE RESEARCH
DOI: 10.1038/NPHYS3419

关键词

-

资金

  1. Los Alamos LDRD programme
  2. NSF [DMR-1157490]
  3. State of Florida
  4. AFOSR [FA9550-14-1-0268]
  5. Welch Foundation [C1716]

向作者/读者索取更多资源

The recently discovered monolayer transition metal dichalcogenides (TMDCs) provide a fertile playground to explore new coupled spin-valley physics(1-3). Although robust spin and valley degrees of freedom are inferred from polarized photoluminescence (PL) experiments(4-8), PL timescales are necessarily constrained by short-lived (3-100 ps) electron-hole recombination(9,10). Direct probes of spin/valley polarization dynamics of resident carriers in electron (or hole)-doped TMDCs, which may persist long after recombination ceases, are at an early stage(11-13). Here we directly measure the coupled spin-valley dynamics in electron-doped MoS2 and WS2 monolayers using optical Kerr spectroscopy, and reveal very long electron spin lifetimes, exceeding 3 ns at 5 K (two to three orders of magnitude longer than typical exciton recombination times). In contrast with conventional III-V or II-VI semiconductors, spin relaxation accelerates rapidly in small transverse magnetic fields. Supported by a model of coupled spin-valley dynamics, these results indicate a novel mechanism of itinerant electron spin dephasing in the rapidly fluctuating internal spin-orbit field in TMDCs, driven by fast inter-valley scattering. Additionally, a long-lived spin coherence is observed at lower energies, commensurate with localized states. These studies provide insight into the physics underpinning spin and valley dynamics of resident electrons in atomically thin TMDCs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据