4.8 Article

Orbital textures and charge density waves in transition metal dichalcogenides

期刊

NATURE PHYSICS
卷 11, 期 4, 页码 328-331

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/NPHYS3267

关键词

-

资金

  1. German Research Foundation [DFG-GRK1621, GE 1647/2-1]
  2. US Department of Energy [DE-FG02-06ER46285]
  3. U.S. Department of Energy (DOE) [DE-FG02-06ER46285] Funding Source: U.S. Department of Energy (DOE)

向作者/读者索取更多资源

Low-dimensional electron systems, as realized in layered materials, often tend to spontaneously break the symmetry of the underlying nuclear lattice by forming so-called density waves(1); a state of matter that at present attracts enormous attention(2-6). Here we reveal a remarkable and surprising feature of charge density waves, namely their intimate relation to orbital order. For the prototypical material 1T-TaS2 we not only show that the charge density wave within the two-dimensional TaS2 layers involves previously unidentified orbital textures of great complexity. We also demonstrate that two metastable stackings of the orbitally ordered layers allow manipulation of salient features of the electronic structure. Indeed, these orbital effects provide a route to switch 1T-TaS2 nanostructures from metallic to semiconducting with technologically pertinent gaps of the order of 200meV. This new type of orbitronics is especially relevant for the ongoing development of novel, miniaturized and ultrafast devices based on layered transition metal dichalcogenides(7,8).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据