4.8 Article

Ferroelectricity in the multiferroic hexagonal manganites

期刊

NATURE PHYSICS
卷 11, 期 12, 页码 1070-+

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/NPHYS3468

关键词

-

资金

  1. ETH Research Grant [ETH-06 12-2]

向作者/读者索取更多资源

Since their discovery in 1963 the hexagonal manganites have consolidated their role as exotic ferroelectrics with astonishing functionalities. Their introduction as room-temperature device ferroelectrics was followed by observations of giant flexoelectricity, multiferroicity with magnetoelectric domain and domain-wall coupling, protected vortex domain structures, topological domain-scaling behaviour and domain walls with tunable conductance and magnetism. Even after half a century, however, the emergence of the ferroelectric state has remained the subject of fierce debate. We resolve the interplay of electric polarization, topological trimerization and temperature by direct access to the polarization for temperatures up to 1,400 K. Nonlinear optical experiments and piezoresponse force microscopy, complemented by Monte Carlo simulations, reveal a single phase transition with ferroelectricity determined by topology rather than electrostatics. Fundamental properties of the hexagonal manganites, including an explanation for the two-phase-transition controversy as a finite-size scaling effect, are derived from this and highlight why improper ferroelectrics are an inherent source of novel functionalities.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据