4.5 Article

Integrated seismic tomography and ground-penetrating radar (GPR) for the high-resolution study of burial mounds (tumuli)

期刊

JOURNAL OF ARCHAEOLOGICAL SCIENCE
卷 35, 期 9, 页码 2614-2623

出版社

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jas.2008.04.024

关键词

geophysics; archaeology; seismic tomography; ground-penetrating radar; burial mound; tumulus; 3-D interpretation

向作者/读者索取更多资源

The study primarily aims at providing adequate imaging resolution of large and prominent targets of archaeological interest, such as pyramids and tumuli, at all depth levels. We implemented an integrated seismic tomography and georadar (STG) technique to perform high-resolution imaging and characterization of tumuli (burial mounds). We tested the proposed technique on a preserved late Bronze Age burial mound in northern Italy, for which STG succeeded in performing an accurate 3-D reconstruction of the structure and stratigraphy as proved by later archaeological excavations. We completed two transmission seismic tomography measurements, at present ground level and at 1.5 m elevation, with a 24channel seismograph and 15o angular separation between geophones. The ground-penetrating radar (GPR) clataset encompasses 12 250 MHz radial profiles and 12 common mid point gathers for velocity analysis. Shallow layers of the mound are successfully imaged by GPR, whilst the structure of the deep central part of the tomb is reconstructed from seismic traveltime inversion. In particular, GPR images lenses and layers of sediments forming the external part of the tumulus, evidences of a looting attempt, peripheral structures associated with later exploitation of the mound (furnaces) and, in the external sector of the tumulus, the top of the deep layer of silty sediments covering the funeral chamber. Tomographic results reveal seismic velocity anomalies of potential archaeological interest at ground level, which were successively validated by archaeological excavations. The integration of GPR and tomographic datasets is an effective strategy to overcome the imaging and interpretation problems related to the structure of such peculiar funeral monuments. STG can be applied to a virtually unlimited dimensional range and requires a limited data acquisition, processing and inversion effort. The results of the study allowed the identification of the funeral chamber and a detailed imaging of layering and structural details. (c) 2008 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据