4.8 Article

Deep in vivo photoacoustic imaging of mammalian tissues using a tyrosinase-based genetic reporter

期刊

NATURE PHOTONICS
卷 9, 期 4, 页码 239-246

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/NPHOTON.2015.22

关键词

-

资金

  1. UK Biotechnology Research Council (BBSRC) [BB/I014357/1]
  2. gene-therapy division of the UK NIHR University College London Hospital Biomedical Research Centre
  3. King's College London and University College London Comprehensive Cancer Imaging Centre, Cancer Research UK
  4. Engineering and Physical Sciences Research Council (EPSRC)
  5. Medical Research Council and Department of Health, UK
  6. European Union [317744]
  7. EPSRC Leadership Fellowship
  8. ERC [281356]
  9. BBSRC [BB/I014357/1] Funding Source: UKRI
  10. EPSRC [EP/L020262/1, EP/H005536/1, EP/E050980/1] Funding Source: UKRI
  11. MRC [G1001497] Funding Source: UKRI
  12. Biotechnology and Biological Sciences Research Council [BB/I014357/1] Funding Source: researchfish
  13. Cancer Research UK [21030, 16463] Funding Source: researchfish
  14. Engineering and Physical Sciences Research Council [EP/E050980/1, EP/L020262/1, EP/H005536/1] Funding Source: researchfish
  15. Medical Research Council [G1001497] Funding Source: researchfish
  16. European Research Council (ERC) [281356] Funding Source: European Research Council (ERC)

向作者/读者索取更多资源

Photoacoustic imaging allows absorption-based high-resolution spectroscopic in vivo imaging at a depth beyond that of optical microscopy. Until recently, photoacoustic imaging has largely been restricted to visualizing the vasculature through endogenous haemoglobin contrast, with most non-vascularized tissues remaining invisible unless exogenous contrast agents are administered. Genetically encodable photoacoustic contrast is attractive as it allows selective labelling of cells, permitting studies of, for example, specific genetic expression, cell growth or more complex biological behaviours in vivo. In this study we report a novel photoacoustic imaging scanner and a tyrosinase-based reporter system that causes human cell lines to synthesize the absorbing pigment eumelanin, thus providing strong photoacoustic contrast. Detailed three-dimensional images of xenografts formed of tyrosinase-expressing cells implanted in mice are obtained in vivo to depths approaching 10 mm with a spatial resolution below 100 mu m. This scheme is a powerful tool for studying cellular and genetic processes in deep mammalian tissues.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据