4.8 Article

Strong light-matter coupling in two-dimensional atomic crystals

期刊

NATURE PHOTONICS
卷 9, 期 1, 页码 30-34

出版社

NATURE RESEARCH
DOI: 10.1038/NPHOTON.2014.304

关键词

-

资金

  1. Army Research Office [W911NF1310001]
  2. National Science Foundation MRSEC programme [DMR1120923]
  3. Air Force Office of Scientific Research
  4. Ministry of Science and Technology of the Republic of China [103-2112-M-007-001-MY3]
  5. NSERC

向作者/读者索取更多资源

Two-dimensional atomic crystals of graphene, as well as transition-metal dichalcogenides, have emerged as a class of materials that demonstrate strong interaction with light. This interaction can be further controlled by embedding such materials into optical microcavities. When the interaction rate is engineered to be faster than dissipation from the light and matter entities, one reaches the 'strong coupling' regime. This results in the formation of half-light, half-matter bosonic quasiparticles called microcavity polaritons. Here, we report evidence of strong light-matter coupling and the formation of microcavity polaritons in a two-dimensional atomic crystal of molybdenum disulphide (MoS2) embedded inside a dielectric microcavity at room temperature. A Rabi splitting of 46 +/- 3 meV is observed in angle-resolved reflectivity and photoluminescence spectra due to coupling between the two-dimensional excitons and the cavity photons. Realizing strong coupling at room temperature in two-dimensional materials that offer a disorder-free potential landscape provides an attractive route for the development of practical polaritonic devices.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据