4.5 Article

Nonylphenol-induced apoptotic cell death in mouse TM4 Sertoli cells via the generation of reactive oxygen species and activation of the ERK signaling pathway

期刊

JOURNAL OF APPLIED TOXICOLOGY
卷 34, 期 6, 页码 628-636

出版社

WILEY-BLACKWELL
DOI: 10.1002/jat.2886

关键词

nonylphenol; TM4; ROS; Sertoli cells; MAPK signaling; apoptosis

资金

  1. Ministry of Knowledge Economy (MKE)
  2. General Project grant for Developing a Toxicological Evaluation System using Toxicogenomics at the Korea Institute of Toxicology

向作者/读者索取更多资源

Nonylphenol (NP), a representative endocrine disruptor, interferes with reproductive function in aquatic organisms and animals. Although many previous studies have focused on apoptotic cell death by NP, the fundamental mechanism of NP on apoptosis remains poorly understood. Here, we investigated the molecular mechanism on NP-induced apoptotic cell death in mouse TM4 Sertoli cells. To evaluate NP treatment on cell viability, formazan and lactate dehydrogenase (LDH) assays were performed. Results indicate that NP reduced cell viability and increased the release of LDH in dose- and time-dependent manners. The reduction of cell viability by NP treatment appeared to involve necrosis as well as apoptosis based on nuclear fragmentation, an increase in the sub G1 population, and the detection of poly(ADP ribose) polymerase and caspase-3 cleavage. Additionally, the anti-apoptotic protein Bcl-2 diminished, whereas the pro-apoptotic protein Bax increased in a time-dependent manner. Note that NP-induced apoptotic cell death was enhanced by the generation of reactive oxygen species (ROS) and activation of extracellular signal-regulated kinase (ERK) signaling. Pretreatment with N-acetylcysteine, an antioxidant, attenuated NP-induced apoptotic cell death. Moreover, NP caused a transient activation of the MAPK pathway. In particular, NP-induced cell death was significantly suppressed by U0126, a specific inhibitor of ERK. Taken together, our results suggest that NP induces apoptosis in mouse TM4 Sertoli cells via ROS generation and ERK activation. Copyright (c) 2013 John Wiley & Sons, Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据