4.5 Article

Comparative study of cytotoxicity, oxidative stress and genotoxicity induced by four typical nanomaterials: the role of particle size, shape and composition

期刊

JOURNAL OF APPLIED TOXICOLOGY
卷 29, 期 1, 页码 69-78

出版社

WILEY
DOI: 10.1002/jat.1385

关键词

nanomaterials; engineered nanoparticles; cytoxicity; oxidative stress; genotoxicity; reactive oxygen species

资金

  1. National Natural Science Foundation of China [30500399]

向作者/读者索取更多资源

Although the biological effects of some nanomaterials have already been assessed, information on toxicity and possible mechanisms of various particle types are insufficient. Moreover, the role of particle properties in the toxic reaction remains to be fully understood. In this paper, we aimed to explore the interrelationship between particle size, shape, chemical composition and toxicological effects of four typical nanomaterials with comparable properties: carbon black (CB), single wall carbon nanotube, silicon dioxide (SiO2) and zinc dioxide (ZnO) nanoparticles. We investigated the cytotoxicity, genotoxicity and oxidative effects of particles on primary mouse embryo fibroblast cells. As observed in the methyl thiazolyl tetrazolium (MTT) and water-soluble tetrazolium (WST) assays, ZnO induced much greater cytotoxicity than non-metal nanoparticles. This was significantly in accordance with intracellular oxidative stress levels measured by glutathione depletion, malondialdehyde production, superoxide dismutase inhibition as well as reactive oxygen species generation. The results indicated that oxidative stress may be a key route in inducing the cytotoxicity of nanoparticles. Compared with ZnO nanoparticles, carbon nanotubes were moderately cytotoxic but induced more DNA damage determined by the comet assay. CB and SiO2 seemed to be less effective. The comparative analysis demonstrated that particle composition probably played a primary role in the cytotoxic effects of different nanoparticles. However, the potential genotoxicity might be mostly attributed to particle shape. Copyright (C) 2008 John Wiley & Sons, Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据