4.4 Article

The Gamma-count distribution in the analysis of experimental underdispersed data

期刊

JOURNAL OF APPLIED STATISTICS
卷 41, 期 12, 页码 2616-2626

出版社

TAYLOR & FRANCIS LTD
DOI: 10.1080/02664763.2014.922168

关键词

Poisson regression; likelihood inference; Gamma-count; underdispersion; quasi-Poisson; cotton

向作者/读者索取更多资源

Event counts are response variables with non-negative integer values representing the number of times that an event occurs within a fixed domain such as a time interval, a geographical area or a cell of a contingency table. Analysis of counts by Gaussian regression models ignores the discreteness, asymmetry and heteroscedasticity and is inefficient, providing unrealistic standard errors or possibly negative predictions of the expected number of events. The Poisson regression is the standard model for count data with underlying assumptions on the generating process which may be implausible in many applications. Statisticians have long recognized the limitation of imposing equidispersion under the Poisson regression model. A typical situation is when the conditional variance exceeds the conditional mean, in which case models allowing for overdispersion are routinely used. Less reported is the case of underdispersion with fewer modeling alternatives and assessments available in the literature. One of such alternatives, the Gamma-count model, is adopted here in the analysis of an agronomic experiment designed to investigate the effect of levels of defoliation on different phenological states upon the number of cotton bolls. Data set and code for analysis are available as online supplements. Results show improvements over the Poisson model and the semi-parametric quasi-Poisson model in capturing the observed variability in the data. Estimating rather than assuming the underlying variance process leads to important insights into the process.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据