4.3 Article

Estimating canopy leaf area index in the late stages of wheat growth using continuous wavelet transform

期刊

出版社

SPIE-SOC PHOTO-OPTICAL INSTRUMENTATION ENGINEERS
DOI: 10.1117/1.JRS.8.083517

关键词

continuous wavelet transform; leaf area index; hyperspectral vegetation index; wheat canopy; later growth stage

资金

  1. National Science and Technology Major Project, in China [30-Y20A01-9003-12/13]
  2. National Program on Key Basic Research Project of China [2010CB951503]
  3. program B for Outstanding PhD candidate of Nanjing University [201301B012]

向作者/读者索取更多资源

The existing hyperspectral vegetation indices used for estimating the canopy leaf area index (LAI) of winter wheat (Triticum aestivum L.) performed well, but the use of such indices at late growth stages can lead to inaccurate results. To improve the performance of LAI models for wheat in late growth stages, the continuous wavelet transform (CWT) method was applied in this study and used to decompose the canopy reflectance and its first derivative into wavelet coefficients. The correlation scalograms of wavelet coefficients and the LAI were then constructed and used to extract the top 1% correlated region as the wavelet feature. The canopy LAI estimation model for late growth wheat was established at last and compared with models based on 12 different types of hyperspectral vegetation indices. The results showed that, compared with the estimation models using the hyperspectral vegetation indices (for which the R-2 values were all less than 0.15 and the root-mean-square errors (RMSEs) were greater than 1), the CWT-based canopy LAI estimation model for late growth wheat had obvious improvements in accuracy (maximum R-2 of 0.53 and minimum of RMSE of 0.78). Hence, this new method shows promise for use in agricultural and ecological applications. (C) 2014 Society of Photo-Optical Instrumentation Engineers (SPIE)

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据