4.8 Article

Deterministic photon-emitter coupling in chiral photonic circuits

期刊

NATURE NANOTECHNOLOGY
卷 10, 期 9, 页码 775-+

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/NNANO.2015.159

关键词

-

资金

  1. Villum Foundation
  2. Carlsberg Foundation
  3. Danish Council for Independent Research (Natural Sciences and Technology and Production Sciences)
  4. European Research Council (ERC Consolidator Grant ALLQUANTUM)
  5. Korea Institute of Science and Technology
  6. Ministry of Science, ICT & Future Planning, Republic of Korea [2E25800] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)
  7. National Research Foundation of Korea [2006-06386] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

向作者/读者索取更多资源

Engineering photon emission and scattering is central to modern photonics applications ranging from light harvesting to quantum-information processing. To this end, nanophotonic waveguides are well suited as they confine photons to a one-dimensional geometry and thereby increase the light-matter interaction. In a regular waveguide, a quantum emitter interacts equally with photons in either of the two propagation directions. This symmetry is violated in nanophotonic structures in which non-transversal local electric-field components imply that photon emission(1,2) and scattering(3) may become directional. Here we show that the helicity of the optical transition of a quantum emitter determines the direction of single-photon emission in a specially engineered photonic-crystal waveguide. We observe single-photon emission into the waveguide with a directionality that exceeds 90% under conditions in which practically all the emitted photons are coupled to the waveguide. The chiral light-matter interaction enables deterministic and highly directional photon emission for experimentally achievable on-chip non-reciprocal photonic elements. These may serve as key building blocks for single-photon optical diodes, transistors(4) and deterministic quantum gates(5). Furthermore, chiral photonic circuits allow the dissipative preparation of entangled states of multiple emitters(6) for experimentally achievable parameters(7), may lead to novel topological photon states(8,9) and could be applied for directional steering of light(10-13).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据