4.8 Article

Solution-processed carbon nanotube thin-film complementary static random access memory

期刊

NATURE NANOTECHNOLOGY
卷 10, 期 11, 页码 944-U191

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/NNANO.2015.197

关键词

-

资金

  1. Office of Naval Research MURI Program [N00014-11-1-0690]
  2. National Science Foundation [DMR-1006391, DMR-1121262, CCF-0845605]
  3. National Science Foundation Graduate Research Fellowship
  4. NASA Space Technology Research Fellowship
  5. Direct For Mathematical & Physical Scien
  6. Division Of Materials Research [1006391] Funding Source: National Science Foundation

向作者/读者索取更多资源

Over the past two decades, extensive research on single-walled carbon nanotubes (SWCNTs) has elucidated their many extraordinary properties(1-3), making them one of the most promising candidates for solution-processable, high-performance integrated circuits(4,5). In particular, advances in the enrichment of high-purity semiconducting SWCNTs6-8 have enabled recent circuit demonstrations including synchronous digital logic(9), flexible electronics(10-14) and high-frequency applications(15). However, due to the stringent requirements of the transistors used in complementary metal-oxide-semiconductor (CMOS) logic as well as the absence of sufficiently stable and spatially homogeneous SWCNT thin-film transistors(16-18), the development of large-scale SWCNT CMOS integrated circuits has been limited in both complexity and functionality(19-21). Here, we demonstrate the stable and uniform electronic performance of complementary p-type and n-type SWCNT thin-film transistors by controlling adsorbed atmospheric dopants and incorporating robust encapsulation layers. Based on these complementary SWCNT thin-film transistors, we simulate, design and fabricate arrays of low-power static random access memory circuits, achieving large-scale integration for the first time based on solution-processed semiconductors.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据